QUESTION BANK	2020
---------------	------

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Basic Electrical and Electronics Engineering (18 EE0241)Course & Branch : B. Tech. – MECYear & Semester : II - B. Tech. & II - SemesterRegulation : R18

UNIT - I - INTRODUCTION TO ELECTRICAL ENGINEERING

Electrical Circuits I

QUESTION BANK 2020

6. Find the current delivered by the source for the circuit shown in figure.

7. Find the voltage to be applied across AB in order to drive a current of 5A into the **10 M** circuit.

8.		Explain in detail about basic circuit components.	10 M
9.		Explain the following in detail	
		i) Resistive networks	
		ii) Inductive networks	
		iii) Capacitive networks	
10.	a)	Define RMS value,	2 M
	b)	Define average value,	2 M
	c)	Define form factor.	2 M
	d)	Define peak factor.	2 M
	e)	Prove that the form factor of the sinusoidal wave is 1.11.	2 M

10 M

		QUESTION BANK 202	0
	C.	SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583	
		QUESTION BANK (DESCRIPTIVE)	
Subje Cours	ct wi se & 1	th Code : Basic Electrical and Electronics Engineering (19 EE0240) Branch : B. Tech. – CSE	
Year o	& Se	mester : I - B. Tech. & II - Semester Regulation : R19	
		UNIT - II – NETWORK THEOREMS	
		TWO PORT NETWORKS	
1.	a)	State Super position theorem	2 N
	b)	Calculate the current in 20Ω resistor in the given circuit using super position theorem.	8 M
		1Ω 1Ω	
		$\pm 10 V \neq 20$ $10 \neq 10$	
_			
2.	a)	State Thevenin's theorem	2 N
	D)	Find the Thevenin's equivalent circuit across AB for the circuit shown.	8 N
		→ → →	
		\overline{T}^{50v} $\mathbf{\mathbf{\mathbf{5}}}^{4\Omega}$	
_		••••••••••••••••••••••••••••••••••••••	
3.	a) L)	State Norton's theorem.	2 N
	D)	Pind Norton's equivalent circuit across AB for the circuit shown.	8 IV
		┌──³¹² ┬──● △	
		$\mathbf{\xi}^{4\Omega}$	
		B	
Elect	trical	Circuits I	Page

QUESTION BANK 2020 Determine the maximum power delivered to the load resistance R_L 4. 10 M **20** Ω **30** Ω Ε 60 V **10**Ω R∟ State and prove Reciprocity theorem with suitable example. 10 M 5 5. Explain in detail about Impedance parameters a) 5 M **b)** Briefly discuss about Admittance parameters 5 M 7. Find the Open circuit parameters for the given circuit **10 M** 2($\mathbf{1}\Omega$ V₁ V₂ Find the Short circuit parameters for the given circuit. 8. 10 M $\mathbf{2}\Omega$ 1Ω V₁ V₂ The given ABCD parameters are A=2, B=0.9, C=1.2, D=0.5. Find Y- parameters. 9. a) 5 M The given Y-parameters are Y₁₁=0.5, Y₁₂=Y₂₁=0.6, Y₂₂=0.9. Find the Impedance b) 5 M parameters. Define Thevenin's and Norton's theorem 10. a) 2 M State Maximum power theorem b) 2 M State Reciprocity theorem c) 2 M Define Super position theorem **d**) 2 M Mention the importance of two port networks e) 2 M

		SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR			
Siddharth Nagar, Narayanavanam Road – 517583					
		QUESTION BANK (DESCRIPTIVE)			
Subje	ct wi	th Code : Basic Electrical and Electronics Engineering (19 EE0240)			
Cours	se &]	Branch : B. Tech. – CSE			
Year	& Se	mester : I - B. Tech. & II - Semester Regulation : R19			
		<u> UNIT - III – DC MOTORS & TRANSFORMERS</u>			
1.	a)	Discuss about the principle of operation of DC motors	5 M		
	b)	Calculate the value of torque established by the armature of a 4-pole DC motor having 774 conductors, 2 paths in parallel, 24mwb flux per pole when the total armature current is 50A.	5 M		
2.	2. A 220V shunt motor takes a total current of 80A and runs at 800 r.p.m. Shunt field 10 M resistance and armature resistance are 50Ω and 0.1Ω , respectively. If iron and friction losses amount to 1600W. Find (i) Copper losses (ii) Armature torque (iii) Shaft torque (iv) Efficiency.				
3.	3. a) Derive Torque equation of dc motor.				
	 b) The counter emf of Shunt motor is 227 V. The field resistance is 160Ω and field 5 M current 1.5A. If the line current is 36.5A, find the armature resistance also find armature current when the motor is stationary. 		5 M		
4.	a)	a) Explain about constructional details of dc motor.6 N			
_	b) A 6 pole lap wound shunt motor has 500 conductors, the armature and shunt field 4 M resistances are 0.05 Ω and 25 Ω , respectively. Find the speed of the motor if it takes 120 A from dc supply of 100 V. Flux per pole is 20 mWb.		4 M		
5		Briefly discuss about various types of DC motors with neat sketches.	10 M		
5.	a)	Derive EMF equation of a transformer	6 M		
_	b)	A 100 kVA, 11000/400 V, 50 Hz transformer has 40 secondary turns. Calculate the number of primary turns and primary and secondary currents.	4 M		
7.	a)	Explain constructional details of transformer.	6 M		
0	b)	A 20 kVA, 2000/200 V, 50 Hz transformer has 66 secondary turns. Calculate the number of primary turns and primary and secondary currents. Neglect losses.	4 M		
ð. 0	2)	Derive the condition for maximum officiency of the transformer			
У.	a) L)	Discuss about the voltage regulation of the transformer.	JIVI		
4.0	D)	Discuss about the voltage regulation of the transformer.	J M		
10.	a) 6)	Enumerate the types of DC motors.	2 M		
	ი) ს)	Use the expression for transformer ration in terms voltage, current and turns	2 NI 2 N/		
	d)	What is working principle of transformer?	2 IVI 2 M		
	e)	Enumerate the various losses associated with transformer.	$\frac{2}{2}$ M		
	,	Prepared by: B.RA	MESH		

Electrical Circuits I

QUESTION BANK 2020

Electrical Circuits I